DEFENSE TECHNICAL INFORMATION CENTER
REQUEST FOR SCIENTIFIC AND TECHNICAL REPORTS

TITLE SMOOTH SLIDING MODE CONTROLLER DESIGN FOR ROBUST MISSILE AUTOPILOT .

1. Report Availability  (Please check one box) 2a. Number of Copies 2b. Forwarding Date
This report is available. (Complete section 2a - 2f) Forwarded
D This report is not available. (Complete section 3)

2c. Distribution Statement (Please check one box)

DoD Directive 5230.24, "Distribution Statements on Technical Documents," 18 Mar 87, contains seven distribution
statements, as described briefly below. Technical documents MUST be assigned a distribution statement.

’

@/DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.
L DISTRIBUTION STATEMENT B: Distribution is authorized to U.S. Government Agencies only.

[ DISTRIBUTION STATEMENT C: Distribution is authorized to U.S. Government Agencies and their
contractors.

” DISTRIBUTION STATEMENT D: Distribution authorized to U.S. Department of Defense (DoD) and U.S.

DoD contractors only.

[ DISTRIBUTION STATEMENT E: Distribution authorized to U.S. Department of Defense (DoD) components
only.

DISTRIBUTION STATEMENT F: Further dissemination only as directed by the controlling DoD office
indicated below or by higher authority.

DISTRIBUTION STATEMENT X: Distribution authorized to U.S. Government agencies and private
individuals or enterprises eligible to obtain export-controlled technical data in accordance with DoD
Directive 5230.25, Withholding of Unclassified Data from Public Disclosure, 6 Nov 84.

2d. Reason For the Above Distribution Statement (in accordance with DoD Directive 5230.24)

2e. Controlling Office 2f. Date of Distribution Statement
Determination
3. This report is NOT forwarded for the following reasons. (Please check appropriate box)
M It was previously forwarded to DTIC on (date) and the AD number is

(] It will be published at a later date. Enter approximate date if known.

M In accordance with the provisions of DoD Directives 3200.12, the requested document is not supplied

because:
Print or Type Name Signature e
?4772/5/,4 T Vadl \ mM@d %&QM
Telephone (For DWAC Usé Only) y v 7
2S¢ g;) &/ aQ 65’9 AQ Number M02-03-0226

20011206 036




Technical Report

prepared for DoD / U.S. Army / AMCOM

Smooth Sliding Mode Controller Design for Robust Missile Autopilot

Authors: Dr. Yuri B. Shtessel, Principal Investigator
Department of Electrical and Computer Engineering
University of Alabama in Huntsville, Huntsville, AL 35899
ph: (256)824-6164, fax: (256)824-6803, shtessel@ece.uah.edu
Contract Number: DAAHO01-01-C-R160 Opt.003a

Period of Performance: 5/10/01 —9/30/01

Final Report Due: 9/30/2001
Award: $22,481.50
DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited
September 2001

1

AOMO2-03-0226




Smooth Sliding Mode Controller Design for Robust Missile Autopilot

Description of the Effort

a. General

The University of Alabama in Huntsville (UAH) will provide the personnel and
equipment to develop Smooth Sliding Mode Control algorithms. These algorithms may be used

to provide a generic flight control to advanced guided weapon systems.

b. Requirements

The developed Sliding Mode Controller (SMC) algorithms will be robust to agile reference
commands and unknown disturbances from environmental conditions (atmospheric turbulence),
as well as missile and its actuator uncertainties and failures. The key task in developing a smooth
SMC is to design a multi-loop control system, where the sliding mode exists in every loop. A
virtual control signal to be produced in every outer loop must be smooth, for it has to be tracked
by inner cascades of a multi-loop system. Smoothness of a control signal and existence of a
multi-loop SMC must be achieved without degrading high precision and robustness of sliding
modes. The developed smooth sliding mode control algorithms are to be applied to generic

missile control problems.



Abstract

Presented is a method of smooth sliding mode control design to provide for the second-
order sliding mode on the selected sliding surface. The control law is a nonlinear dynamic
feedback that in absence of unknown disturbances provides for finite-time convergence of the
second-order reaching phase dynamics. The application of the second-order disturbance observer
in a combination with the proposed continuous control law gives the second-order sliding
accuracy in presence of unknown disturbances and the discrete-time control update. The
piecewise constant control feedback is smooth.

The proposed control scheme is applied to a generic three-loop control system, and the
proposed multiple time scale sliding mode design is demonstrated on the simplified model of a

ballistic interceptor missile.
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1. Introduction

The area of advanced missile guidance and control is a promising field of application for
latest developments in robust control theory. Many generations of highly successful missiles use
different variants of classical algorithms such as proportional navigation guidance and PID
control [1-3] in association with various extended Kalman filtering techniques. This is the major
reason for industry designers to continue advancement and modernization of these relatively
simple topologies and linear autopilots with fixed given structure. However, “emerging threats
and new operational constraints have created the need for a variety of new weapon systems, ..,
even existing systems can expect significant upgrades.”’[4] The demand for engaging the highly
agile targets [5] with hit-to-kill accuracy and resistance to electronic countermeasures, combined
with that for increased standoff range or high off-boresight angle and effective reconfiguration
for different missions, create new challenges for future missile design. There one can observe
three main directions of rapid theory and technology proliferation to address the need:

e advanced navigation equipment and estimation algorithms;

e advanced guidance strategies;

e advanced missile airframes.

In the last direction, the high performance vehicles are designed to be open-loop unstable, to be
non-axisymmetric for extreme agility; new control actuating mechanisms, including hot- or cold-
gas thrusters and thrust vectoring, hybrid rocket motors, reduced surface area high-speed fins
etc., are in development to increase maneuverability over expanded envelope of flight
conditions.

In many cases, integration of new guidance strategy with new airframe (hybrid rocket
motor with LQG optimal guidance law [6], Sliding Mode Control based guidance with pulse
type on-off thrusters [7]) directly accounts for increased performance in missile airframe due to
the mentioned above developments only, leaving the autopilot structure to be the most
conservative area for design upgrades, and frequently reducing the tracking control problem to
control allocation only [6].

Missile autopilots are usually designed to track acceleration issued by a guidance law on
the basis of data sensed and estimated by a navigation system, where a widely accepted approach
is to estimate relative position, velocity and acceleration via extended Kalman filtering

technique. The typical autopilot uses the gain scheduling technique or rather different parameter




optimization methods (see a review in [4]), given a particular fixed controller structure, such as a
classical PID architecture. The simplest control structure is easy to implement, to tune up and
validate for different performance specifications. The industry designers prefer it to recent linear
and nonlinear schemes, because they never really know how these novel techniques of high
complexity or high-order dynamics would trade off performance for uncertainty robustness, or
improve them both significantly, or whether they will work at all. Moreover, many design
approaches pursue the idea that the problem to design a good controller is to obtain a good
mathematical model of the plant, to derive sophisticated equations, which can include as much
known effects as possible and utilize as much as possible the data obtained via hardware-in-the-
loop simulations.

Having said that, one can come to the following conclusion.

1.1 Requirements for Advanced Missile Autopilot

A new missile autopilot of practical interest should have

e A simple clear structure, which can be readily designed, facilitated, implemented, tuned up
and monitored;

e Increased both performance and robustness to visible level;

e Required the least possible modeling information to guarantee these performance and
robustness;

e Relaxed the sensor/processor/actuator requirements without introducing new restrictive
assumptions, which is difficult to verify;

e Maximal autonomy with respect to common sensed data to be easily integrated with different
navigation/guidance systems;

e Required all on-the-fly ad hoc inevitable modifications being conducted by a professional
with common relevant control theory background.

Having almost all the mentioned above characteristics, the Sliding Mode Control (SMC)
systems [8-12] are valued in the class of robust, high fidelity control algorithms for their robust
accommodation of uncertainties and cancellation of disturbances. In addition, a new generation
of sliding mode algorithms (high order sliding modes [13],[14]) featuring usually 1% or 2™ order
dynamics in traditionally static nonlinear state feedback (conventional sliding mode), produces
continuous control input, which can explicitly account for not only actuator saturation but also

rate saturation limit. The other additional features include enhanced robustness to measurement




noise and opportunity to realize output feedback instead of state feedback to increase robustness
to parametric and dynamic uncertainties.
1.2 SMC as a Perspective Control Technique for Advanced Missile Autopilot

Further, we briefly outline the SMC design specifications to address some of the
formulated requirements. A SMC system has a simple controller structure, clear distinct design
steps and performance assessment. It starts with a highly uncertain plant model, where the
robustness analysis (Lyapunov function technique) is included in controller design. The only
known information required is the relative degree of each commanded output and the ranges of
uncertainties for unknown parameters, nonlinear terms, external disturbances and measurement
noise, as well as actuator limits and rate limits. Uncertain terms in certain subspace can be non-
smooth. For noisy signals, the value of the second time derivative above which a signal can be
considered as noise is required.

The first step in controller design is to judiciously select the sliding manifold (sliding
surface) in the system state space. Equations of sliding surface and the internal dynamics of the
plant compose the closed-loop (compensated) dynamics of the plant. In minimum phase case,
equations of sliding manifold are the desired tracking error dynamics, which is uncoupled from
the internal dynamics and completely plant independent. The system motion on this manifold
(the sliding mode) will be absolutely robust to plant uncertainties and external disturbances. The
order of asymptotic or finite-time-convergence tracking-error dynamics, which can be enforced
in sliding mode is equal to -1, where r is the relative degree of the input/output plant dynamics.
Finite-time-convergence introduces enhanced robustness to perturbations due to the fact that
convergence rate in the vicinity of the origin will be higher than that of asymptotic linear
convergence.

The second step in the SMC design is to design a control law to provide convergence to
and stability on the sliding surface o =0. The control law [8] usually consists of two additive
terms

U=llgg +lyy,. (1.1)
In case of full information of the plant and external inputs, the term u,, , called equivalent

control [8], can be determined to provide exact keeping o =0 . In uncertain case it’s substituted

by an estimate, z?eq , of any portion of Ueg » which can be estimated (calculated). All the rest of




uncertainty is captured by another part, u,,, which is additive and complimentary to #,, and
can capture even totally uncertain u,,, accepting u eq =0.

For conventional sliding mode o = 0, the examples of u,,, are
¢ discontinuous control [8]

Uyp = psgn(o), (1.2)
e continuous control [16]

uy =p-o . (1.3)
For the second-order sliding mode & = ¢ =0 continuous control law [14] is

fan =1 010(}_5 + po [sen(o)dr. (1.4)

All the uncertainties of the plant are accumulated in a single quantity, the relative uncertainty of

equivalent control lueq —zieq|< L, which should be bounded in a reasonable domain of its

arguments. The relative uncertainty gives the value for coefficients p,, 1,09 to get the

sufficient control authority to provide existence of sliding mode. The greater relative uncertainty,
the more control authority is required to guarantee compensation for it. (The method to get
rigorous proof to existence of sliding mode [8] is based on the Lyapunov function technique.)
1.3 SMC Implementation Issues

In practical implementation of the control law (1.2) or (1.4), due to finite time switching
of sgn(-), the very high frequency auto-oscillation regime is established. It has the ability to
capture all the uncertainties and disturbances and cancel out their effect on the closed-loop
dynamics. It has robustness to asynchronous sample rates of measurements and ZOH control in
digital controllers as well. Control (1.2) provides for accuracy of o =0 to be proportional to

(switching time of sgn(-) ). The continuous control (1.4) provides for accuracy of o =0 to be

proportional to 2. The simplest control law (discontinuous (1.2) or continuous (1.3)) provides
for given robustness. All further sophistication (for control to operate at almost maximal
amplitude and rate without saturation, or to provide the output feedback only, instead of state

feedback) increase performance and retain robustness.



The discontinuous SMC is relevant for missile autopilot

There are two major objections against discontinuous control law: the on-off switchable
mode is not energy saving and, in case when control is the fin’s deflection angle, they cannot
move instantly. However, discontinuous control law is particularly applicable to the pulse type
on-off thrust rocket engines with pulse frequency, which is much higher than the bandwidth of
the overall system dynamics, where the PWM (Pulse Width Modulation) or PWPF are employed
so far [7] to produce input equivalent to the continuous control law. Besides, many amplifiers in
electromechanical actuators work in PWM mode to transmit the control signal to the amplified
actual power signal. Instead of PWM, a SMC will automatically produce high frequency auto-
oscillation.

The control structure (1.1) leaves the place for any parallel adaptive corrections (based on

explicit or implicit on-line identification). The less u,, becomes uncertain, the better. The direct

link of uncertainty bounds to control authority gives the room for further optimization of
specifications on control effectors design. In case of severe failure or condition change, which is
above the range specified initially, the automatic reconfiguration can be made [17] without
change of main structure.

At last, one should mention that SMC design is less theory intensive than many novel
approaches, such that a customer can operate independently with the new technology being
delivered. Thus, the simple fixed controller structure for a plant with given relative degree and
the given range for cumulative relative uncertainty, and clear distinct steps to design a controller
and to tune it up, make SMC to be a promising technique for practical missile autopilot design.

In this report, we develop a multiple loop control system featuring sliding modes in each

loop and demonstrate the application of this SMC design to a generic missile autopilot



2. Missile Autopilot General Structure
The first proposal of this work is to establish a new autopilot structure, and then to apply all the
corrections, adaptations, gain scheduling, if necessary. For decades, a classical generalized linear autopilot

structure to track the commands, issued by a guidance law, has had the form presented in Fig.1 3]

Servo

Corarmand & N ¥ Vehicle
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Control
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Fig.1 Classical Autopilot Structure
Where, the stability loop is to stabilize the servo in case it’s a pure integrator; the damping loop
is necessary to restrict oscillations and overshoots to provide adequate system stability margins;

the control loop is responsible for command signal tracking.

In the missiles, the electrical control signal furnished by the controller is superimposed on
a direct rate gyro feedback implementing damping loop. Sometimes, a linear feedback controller
is accomplished by adding a lead compensator to the forward loop to stabilize the unstable
airframe [2]. Many new linear and nonlinear design approaches have left the first two loop
without change and redesign only the third, servo-tracking control loop [11]. As far as the SMC
enforces the closed-loop dynamics with parameters of entirely designer’s choice and the order
being equal to the relative degree of input/output dynamics, this classical structure is no more
necessary. Moreover, to provide the extreme agility of a missile, this artificial damping loop will
be neutralized by a SMC and will not be effective anymore. The plant can even have an unstable
actuator, since all the problems with stability and performance will be resolved by a SMC.

For instance, the following structure for attitude angles tracking is proposed for minimum

phase plants.
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Fig.2 SMC based multiple loop missile autopilot (General Scheme)

where the sliding quantity, o, is formed in each loop, and enforced via virtual control that is to
be followed by in the next inner loop.

In the next section, we design a multiple loop SMC system.
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3. Smooth Sliding Mode Control in Multiple Loop Tracking Systems
3.1 Introduction

In multiple-loop backstepping-type control systems, an important issue is to provide a so-
called virtual control signal to be smooth in an outer loop, for it has to be tracked by inner
cascades of a multi-loop system. Smoothness of a control signal is not easy achievable in control
systems with sliding modes without degrading high precision and robustness.

The idea of this work is to use combination of both the sliding mode estimator for a plant
disturbance and smooth sliding mode controller to design a smooth sliding mode controller that
is robust to disturbances and provides finite time convergence to the custom made sliding
surface.

Two types of smooth sliding mode controllers are to be designed.

. First order smooth finite reaching time sliding mode controller with a traditional

sliding mode observer for disturbance observation. Under the discrete-time control with a
zero-order hold, the accuracy of holding the trajectories on the sliding surface is of the first

order real sliding O(T).

o Second order smooth finite reaching time sliding mode controller with a second
order sliding mode observer for disturbance observation. Under the discrete-time control with

a zero-order hold, the accuracy of holding the trajectories on the sliding surface is of the
second order real sliding O(T 2 )
For many control applications, Sliding Mode Control (SMC) [8-10] has been proven

efficient technique to provide high-fidelity performance in different control problems for
nonlinear systems with uncertainties in system parameters and external disturbances. Ideal
sliding modes feature theoretically-infinite-frequency switching, while the real conventional
sliding modes feature high finite frequency switching of an input signal (control). Such a mode
might be unacceptable if the control signal has to be tracked by inner cascades of a multi-loop
system. Trading the absolute robustness on the sliding surface for the system convergence to a
small domain, the “boundary layer”, around it under a continuous control law, the methods of
this group employ a high-gain saturation function [8],[19] or [20] a sigmoid function. In the
continuous-time control systems with sampled-data measurements and/or discrete-time control

action (zero-order hold with digital control), different types of closed-loop boundary-layer

12
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dynamics are employed to provide for a smooth control, varying from self-adaptive saturation
level functions [21] to fixed-gain deadbeat controls with disturbance estimation using delayed-
time data [22-24]. Another alternative [25] to the latter approach is to incorporate into the
“boundary-layer” dynamics an exosystem model for disturbances [26] avoiding the direct
observer-based disturbance estimation.

The idea to hide discontinuity of control in its higher derivatives has been realized using
higher order sliding modes [14,27]. The resulting higher-order sliding mode is of enhanced
accuracy and robustness to disturbances. However, a drawback of the direct application of this
approach to chattering attenuation is that it cannot tolerate unmodeled fast dynamics. Therefore,
the designed continuous control cannot be, for instance, an outer-loop feedback in a multi-loop

control system.

The idea of this paper is to use both the disturbance estimation and the higher-order
sliding mode techniques to design a continuous sliding mode control, providing finite-time
convergence to the sliding surface and establish the second-order sliding mode in absence of
unknown disturbances. In case when disturbances are present, the disturbance observer
determines the accuracy. Employing the second-order observer [14], the second-order sliding
accuracy can be achieved. The main contribution of this paper is in further development of the

approach presented in the work [28].

3.2 Tracking Problem Formulation
Consider a MIMO plant with # states and m controls, where the “diagonalization method*
[8] has been applied producing m independent dynamics for each input-output channel. Then,
consider the following SISO nonlinear uncertain system that can represent any input-output
channel (we assume relative degree is equal to 3, although the given approach can be generalized
to " order system as well)
X=Xy + (%)) + fi(xg,0),
Xy = X3 + @y (X1, %) + f2 (%1, %2, 0),
X3 = @3 (X1, x5, x3)+ f3(,1) +u,
y=x

3.1)

where the ¢;(-)-functions are known, f;(,,¢) are uncertain time-varying functions that are

bounded in any bounded compact set of their arguments. The problem is to provide for the
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output tracking: y(¢) > ¥€(t). The design problem is to achieve this tracking in multiple loop

sliding modes using full state feedback and backstepping design.
3.3 Multiple Sliding Surface Design with 1*-Order Sliding Modes
A multiple sliding surface implementation of the back-stepping approach looks as follows [30].

1) Define the first sliding surface

Si=yS-y=x{ —x =0, (3.2)
and the following desired closed-loop dynamics for the sliding quantity S,

S, =-7(5)+5+7 (3.3)
where S, = x5 -x,, x5(¢) is to be defined, ¢ = ()'c,c —fl(-,t))—(fcf —f’,), x{ =y°, and /() is sucha
function that the homogeneous part of the system (3.3) is a finite time convergent equation.

From (3.1)-(3.3) one can formally obtain
Sl =) - % - ()- [ =-1(S)+x; —x, +(x1c _fl(',t))_ (/{710 _fAl) (3.4)
From (3.4) we derive the following reference command for the next step
x5 =3 = fi~a(n) + 1 (S) (3.5)
where xf, f; are the best estimates of the reference signal and uncertainty in the first loop that are

based on dynamic observers.

2) The second sliding surface is defined as

S, =x5—-x, =0, (3.6)
Assuming existence of (3.6) and finite time convergence of (3.3) even with ¢ =0, the sliding
mode on the surface (3.2) will be achieved.

Sliding quantity S, is calculated using feedback on x, and equation (3.5) for x;. An
alternative way to produce S, using S, feedback only can be obtained as follows. Derive the
following identity from (3.1), (3.2)

i - fi= S+ +p(x),
then one can estimate

M-fi=Stn ). (3.7)
From (3.5),(3.7) we obtain

Sy =S +7(S). (3.8)
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There are many ways to obtain (3.8). One can estimate the derivative and calculate the nonlinear
term, one can try to estimate them both at once; at last, one can apply the nonlinear DSM
approach and enforce (3.8) in the system motion in an auxiliary DSM.
The closed-loop dynamics for the sliding quantity S, is selected in the form
Sy =-72(82)+ 83+ (3.9)
where S5 =x§ —x;, x5(¢) is to be defined, &, = ()‘c§ - fz(-,t))— (v§ - fz), and y,(-) is of the same
class as y,(-). Similar to Eq.(3.5) the reference command x3(¢) is obtained
X5 =35 - fo = 03(x1.3,) +72(Sy) - (3.10)
3) Finally, the third sliding surface,
S3=X§_X3=O, (3.11)
is achieved under the control
u=—@3()+k 383 +kq 388n(S53) - (3.12)
The closed-loop system in the (S;,S,,S;) state space is derived as
$i=-1(S)+5,+8,
Sy ==p2(8,)+ 83+, (3.13)
53 = xg —ﬁ(‘,t) - k1’3S3 _k073 Sgn(S3)
Dynamics (3.13) plus the error dynamics in the dynamic observers that govern (g,¢,) complete

the total closed-loop dynamics of the plant.
In the work [30], it’s proved the closed-loop stability and convergence of (3.13) with first-order

linear dynamic observers. These observers have served as integral filters to smooth out possibly

non-Lipshitz behavior of x{,x5,%5. That’s why it was possible to define feedback terms in each
compensated dynamics as y;(S;) = k; S; +k; gsgn(S;),i = 1,3. These functions provide for finite

time convergence in (3.13), but they are not differentiable. Linear smoothing filters of the work
[30] overcome the problem of “explosion of terms” trading robustness for stability. However, in
numerical implementations this discontinuous form is rarely used, for even with filtering the

term sgn(S) behavior in outer loops is not good for inner tracking loops. There is no finite time

convergence and the true sliding mode [20] in this case. Another approach is developed in this

work to establish finite time convergence in each loop to a dynamic integral-type sliding surface.

15




Additionally, the integral part specifies time scale separation [17] between the loops to ensure
overall stability of a backstepping-type tracking system.
3.4 Multiple Dynamic Sliding Surface Design with 2".Order Sliding Modes

3.4.1 Continuous Control for Finite Reaching Time Sliding Mode
Finite-reaching-time continuous standard-sliding-mode controllers have been developed
in works [16],[28] for the first order o -dynamics
o= f(o,t)+u. (3.14)
They provide for finite-time-convergence of the first-order closed-loop o -dynamics. One of the

forms in the work [16] is given by

0"+p| "(').5 =0, (3.15)

see Fig.3.

Fig.3 Nonlinear Terminal Sliding Manifold

In absence of uncertainty in the function f(o,t), the control law

ag
“o)==f(0= g (3.16)

renders the closed-loop dynamics (3.15), as a finite time convergent nonlinear manifold. When

the function f(o,r) is totally uncertain, the continuous control law

u(o) = ~pL

jof (3.17)

provides for convergence to the arbitrarily small domain of attraction, the boundary layer, around

the sliding surface o =0 in a standard sliding mode, where the gain p and the uncertainty limit

L determine the boundary layer thickness. The drawbacks of this controller are that the
uncertainty limit defines the boundary layer, and even in absence of uncertainty the domain of

attraction to o =0 is proportional to the discrete interval T under the discrete-time control (first-

16



order sliding accuracy). An additional problem for a mupltiple loop system is that (3.17) is not
smooth enough to be r times differentiable.

3.4.2 Conditions on Smoothness of a Virtual Control

In order for the control of form (3.17) to be a virtual control to be followed by inner
cascades of total order » of a multi-loop system, it has to be » times continuously differentiable.

In work [16], finite time convergence has been proved for the closed-loop dynamics

6+ plof” sgn(o) =0, (3.18)
where & € (0,1). Similar to (3.17), it gives us the virtual control in the form
ugy =-plol” sgn(o). (3.19)

For u( to be followed by a first order tracking system is has to be one time continuously

differentiable. From (3.18),(3.19) we have
. 2a-1
gy = —pza[ai “" sgn(o). (3.20)

Eq. (3.20) gives the following condition on smoothness of the virtual control at the origin
a>1.
In case of an " order tracking system, we have
4y ~ ol sgn(o). (3.21)
Finally, combining conditions of finite time convergence of the compensated dynamics and
smoothness of the virtual control, we obtain the following condition for the " order tracking
system.

Condition on Smoothness. Terminal sliding mode can be enforced on the surface (3.18) by an

" order tracking system in all loops if

L ca<l. (3.22)
r+1

Applying this condition to system (3.1) we must have %< a<l if we select
NSy = |Sl|a sgn(S;) for (3.3). One should not worry about overall stability of system (3.13)
and convergence rate of the estimation error (¢,e,)-dynamics if time scale is applied in each

loop. Multiple time scale is achieved in dynamic sliding surfaces designed in the next section.
Second order sliding modes are established on dynamic sliding surfaces that govern compensated

time scaled dynamics in each loop.
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3.4.3 Multiple Time Scale Dynamic Sliding Surfaces
The first (outer) loop design
Consider the tracking problem for system (3.1). We introduce the following dynamic
sliding surface for the compensated dynamics in the outer loop of the expected 3-loop system
a1+ py [lon|M sen(o e = ey + ¢y [ler|™ sen(ey)at, (3.23)
where e, is the input and the dynamic sliding surface quantity o is the output. If the sliding
mode exists on the surface o7 =0, then from (3.23) we obtain in sliding mode
e +¢ J"ella1 sgn(e, )dt = const, oy =0,
or
& =—cley|” sgn(ey), (3.24)
which is a finite time convergent system, where the terminal time is a function of e;(0),aq,c;.
To enforce convergence to o =0, we consider o} -dynamics using Eq.(3.1) and introducing the
virtual control x5, and the tracking error e, = x5 — x, of the inner loop
&1+ pi|on| M sgn(o) =y — @ (x) - FiloD)— (35 —e)) +eyfe | sen(ey).  (3.25)
The virtual control xj is designed as
%5 = S —o1(x) = Fi (o0 + erler| sgnle) + o flon |10 sen(ery)de,  (3.26)
Given (3.26) and estimation error &, = (v, — f1(.,1)) —(fzc —f”] (.,1)), the outer loop o -dynamics
closed under control (3.26) is obtained
oy + ,01|01]ﬂ“ sgn(oy) + o, _ﬂo*l|’5‘"° sgn(o)dt =&, +e,. (3.27)
Assuming exact estimation, i.e., ¢, =0, and fast convergence of e, to zero (time scale of the

inner loop dynamics), we have the second order o7-dynamics

N o
81+ P —5 + polo 1 sgn(ay) =0, (3.28)
o] sgn(oy)
which is a finite time convergent differential equation given conditions formulated in the

following lemma.

Lemma 1 Consider the following o -dynamics
o= —ado‘ll/zsgn(a)—ao 'ﬂcr[”:‘sgn(a')dr, (3.29)

o > 0,a >0, which can be equivalently presented by the system of two first-order equations
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. ) 1/2
X =xp— allxll sgn(x), (3.30)

Xy = “a0|x1|1/35gn(x1 ),

where x; = . The system (3.29) is asymptotically stable and, moreover, it approaches the origin

in a finite time.

Proof: It’s not difficult to prove asymptotic stability of system (3.29), let a Liapunov function

candidate be

|
IO/O'ZIM sgn(z)dz,
0

P

x2
V(x;,xp)= —21+

V(x)> 0, if x € R2\ {0}, then the Liapunov function derivative will be

1/2
4 Xy —aylxy| " “sgn(x)

.l.+l . 2
__a_._ =—aoal!xl!3 2 <O,1fxem \{0}.
X

V 1/3
- afo|x1| sgn(x;)

However, in order to prove the finite time convergence to the origin of system (3.29), one have

to apply special topics of Liapunov analysis of the finite time convergence differential equations.

In the work [29] the following theorem has been proved.

Theorem Let xe DN, x= f(x), f:R" —N" is continuous on an open neighborhood D
of the origin and locally Lipshitz on D\{0} and f(0)=0. Suppose there exists a continuous

function ¥ : D — R such that the following conditions hold
(1) V is positive definite;
(if) V is negative on D\{0};

(iii)  there exist real numbers k >0 and « e (0,1), and a neighborhood N < D of the

origin such that ¥ + k% <0 on N\{0}.

Then, the origin is a finite-time-stable equilibrium of X = f(x).
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The function ¥ is satisfying (i),(ii) of the theorem. To prove (iii) we consider the validity of
: 5 x2 4 “
V+kV® =-aga|x|6 +k[7“+%a0|x1|3 ] <0.
The inequality can be transformed to
k(%%—+%a0|x1[%] < (afoa])i[xl]%i. (3.31)

In a small neighborhood of the origin, where x;<<lx<<1, and % -0, ie.

x) —aq]xlll/zsgn(xl) — 0, we have |x|~ ]xlll/z , then from (3.31) we conclude that the left part in

(3.31) will be dominated by }xll, when x, <<1,x <<1, while the right part will be proportional to

51
|x|6«. There exists ae(0,1) such that %l<1, hence one can always select k>0 and a
a

L 51
neighborhood N < D of the origin such that (aoaq)alxllgz will be dominated over the right part
in (11) which is proportional to |x;| in a small N < D. Thus, the proposition (iii) of the theorem

is true, and system (3.29) has a finite-time stable equilibrium at the origin for any & > 0, > 0.

Thus, if g, =1/2,4 4 =1/3, system (3.28) converges to the origin in a finite time
featuring the second order sliding mode o7 =67 =0. In the sliding mode, the compensated

tracking error dynamics is governed by Eq.(3.24) under perfect tracking x, — x5.

To avoid explosion of terms the virtual control (3.26), i.e.

x5 = {C = (xl)—~fl(.,t)+c1 ]ella‘ sgn(e;) + o _ﬂal[ﬁ”’ sgn(oy)dt,

must be continuously differentiable twice. This gives us design condition on &

2
§<a1<1,

and the following condition must be checked for /. For the second derivative of x; be

S

‘51 ll-ﬂw

. . % .

bounded, i.e. since ¥5 ~ , we must have T—P—lﬁ‘“ < oo . From (3.28) we obtain that
~F1.0

g '
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o -4, o.lﬂl,o

2,5[0—,51]
~ 0] : .
I/l,() !

o]
So, to avoid explosion of terms one should have 20,5 — 4, 20.If £, =1/2,0,, =1/3, this

condition is satisfied.

The second loop design
Dynamics of the tracking error e, = x5 —x, is to be enforced in the second loop on the

dynamic sliding surface

oy + Py _ﬂo*zlﬂ“ sgn(o,)dt = e, +¢, ﬂe?_|“2 sgn(e, )dt, (3.32)
which is similar to the first one (3.23) with one difference, it must be faster enough to enforce

sufficient time scale to consider e, =0 in the outer loop.

To enforce convergence to o, =0, we consider o, -dynamics using Eq.(3.1) and introducing

the virtual control x3, and the tracking error e; = x5 — x5 of the inner loop

g ““,02,1|02|ﬁ2’l sgn(oy) = £5 — 0y (x1, %) = f2(.1) = (x5 —e3) +c3ley| ™ sgney).

(3.33)
The virtual control x3 is designed as
x§ =35 = 0 (01.3) = Fo (L) + €oley | sgnley) + oo [l |20 sgn(ey ), (3.34)

Given (3.33) and estimation error &, = (x5 — f,(.,£)) = (x5 — fz (.,4)), the second loop o, -
dynamics closed under control (3.34) is obtained

&y + P10 |'82'1 sgn(o) + P20 J|02|ﬂ2’0 sgn(oy)dt =é; +e;3. (3.35)
Assuming exact estimation, i.e., &, = 0, and fast convergence of e; to zero (time scale of the

inner loop dynamics), we have the second order finite time convergent o, -dynamics.

The third loop design

The very inner loop is to be designed for actual control « to stabilize the tracking error

ey -dynamics

é3 = X3 —3(x1,%x5,x3)— f3(,0)—u. (3.36)

The sliding mode control is designed in a standard way [8]
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u=¢3()£1,x2,x3)+psgn(e3), p>ljf§’+|f3‘ (3.37)

Additional requirements must exist for @, in order for x3 to be bounded. From the obtained

1

condition on smoothness we have 5

<ap <.
The closed loop dynamics in the third loop,

é5 = 35 — f3(-1) ~ psg(es) (3:38)

is a finite time convergent system.

3.4.4 Conclusions on Multiple Time Scale Dynamic SMC Design

A three-loop tracking control system has been designed for a third order uncertain SISO
system. Tracking error dynamics is enforced in each loop in terminal dynamic sliding surfaces.
The second order sliding performance is provided for sliding modes on dynamic sliding surfaces
in the outer and the inner loops under virtual controls. Time scale separation ensures overall
stability of Eqs.(3.27).(3.35),(3.38). When ¢, =é, =0, exact tracking y = y. is achieved in a
finite time by system (3.1) under control (3.37).

A signal differentiator and a disturbance observer must accompany the presented design

to ensure ¢, — 0,6, >0 as close as possible. The design of a signal differentiator and

disturbance observer on its basis is presented in the next section on the example of calculating

. and £,(.,1).
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4. An Auxiliary Tool: Robust SMC Differentiator
2-Sliding Exact Differentiator

The 2-sliding exact differentitator developed in the work [14] can be employed to
produce the time derivatives of a smooth reference signal. An exact differentiator of a given

signal, x(¢), has the form

'i‘-l = J‘.izdf,

) £)-# ) 4.1

iy =p1—&x—‘0)5+po sgn(x(t) - & )dz. @D
ROREA

where the output %, converges to x(¢) in a finite time. To verify this statement, we can identify
the dynamics of estimation error, e = x - %, using Eq. (16) as
é

0.5
e

é+ % + asgn(e) = x(t). 4.2)

This is a finite-time-convergence second-order differential equation, which provides for

2-sliding mode, e=é=0, in case when the parametersa,4 are appropriately selected in
accordance with the upper boundary for |5c'(t)] < L. A proof to this statement gives the following

lemma, which summarizes the results of the work [14] about 2-sliding modes with finite time

convergence.

Lemma 2 Given 2" order nonlinear differential equation (4.2) and conditions |5c'(t)‘ <L, az4L,

2205093 0)=0, &0)=z,, z, = arbitrary constant, any its solution converges to the origin in

finite time.
Remark The observer (4.1) is subjected to the chattering of the output for noisy signals.

Therefore, in practical observer of this form, a low-pass filtering of %, is required for a smooth
estimate of x(z) , as shown in the work [14].
2-Sliding Disturbance Observer

We consider disturbance estimation on the example of the first equation in (3.1), i.e.,

fl (.,¢). The state observer for the system

% = o (x)+x + £,0), (4.3)
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is designed as

=g (R)+ x5+ oy |e|0’5 sgn(e) + o jsgn(e)dt, (4.4)
where e = x; — X, . The observer error dynamics is derived

= ()=o) + 101y, u, = pile sgn(e) + oo [sen(e)dt. (4.5
This is a finite time convergent dynamics given the restriction |, (x))— (%) < Cle| for all
times. Thus, u, is an estimate of f|. To provide smooth derivative, the estimate u, is low-pass

filtered before entering the virtual control as fl

fi = —1—-—140. (4.6)

(Ts+1)k
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5. Simulation Example

To illustrate the disturbance cancellation characteristics of the developed method, we
consider the simplified model of a ballistic interceptor missile. A simplified model in the pitch

plane is given by

v, = —i(uu +u, )sind+ s

1m m. (5.1)
v, =—(u, +ud)cosl9+—yf—"-—g

m m

where ¥ =/v +v." is the velocity vector, m is the mass of the interceptor in kg, y, and y, are

disturbances, g=9.81m/s” is gravity, & is the pitch angle of the interceptor, u, is the attitude
control and uy is the divert control.
A simplified rotational motion model for the interceptor is given by
=4,

b r V(I]
=-——u, +-2,
1 J Y J

(5.2)

where g is the pitch rate (rad/s), J is the moment of inertia of the interceptor (kg‘mz), r is the
distance between application of the attitude control force u, at the interceptor’s center of gravity,
and y, is the rotational disturbance term. The output equations are given by
{y'zA"zy"V, (53)
n=a=0-y
where » is the missile’s flight path angle, « is the angle of attack, and 4, is the normal
acceleration. Our goal is to design the attitude control thrust to stabilize angle of attack to zero,

assuming that the divert control thrust delivers desired normal acceleration.

AII" _AII|=O

lim|, () - y,(¢)] = lim

’ 5.4
Yo 9= ()] = lim[0 - a] =0 (54)

lim
where 4,, is a desired reference profile for normalized acceleration. The reference profile for the
normalized acceleration is generated by the guidance system to minimize miss distance in the

interceptor using a number of methods, such as proportional navigation, augmented proportional

navigation and other advanced guidance laws [1]. Forcing a to zero aligns the missile body with
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the flight path angle. We consider the normal aerodynamic lift force and pitching moment as

disturbances entering the plant

2 2
V
paV /Da Sl‘C

N = 5 S-Cy, a, M= 5 mg s

sz—-NSin]/, Y- =NC087, V/azM'

Finally our numerical model is obtained as
) 1 :
v, = —%((ua +1000)sin 8+ .. ),

v, = %((ua +1000)cos @+ v, )-9.81,
f=q,

g=-0.1u, +v,),

a= 6_}/9

y=tan™ (V—’j (5.5)

Vi
v, =-3-10"4V2asiny, p. =3-10"*V2acosy, y, =-0.5-10V?a,
v, (0) = 2000m /s, v-(0) = 0m/s, &(0) = 0.3rad, q(0) =Orad/s.
The plant output to be stabilized is angle of attack, the attitude control trust is actuated
via a first order actuator
u, =20, —u), (5.6)

so the actual control signal is u, and we have a third order input-output dynamics

a=q--=1,
7
qg=-0.1u, +y,), (5.7)

u, =-20(u, —u),
where we consider 4, =-v,siny+v.cosy and y, as disturbances in the first and second

loops of a 3-loop control system to be designed.
The stabilizing controller is designed as follows. The first dynamic sliding surface is

selected as
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2/3

o1 +0.5 [|oy]"? sgn(ey)dr = 2 +0.05 [lof*"* sgn(@)at . (5.8)

Then, o -dynamics are identified, introducing e, =q.— 4,

oy = ——0.5|01|”2 sgn(oy) + 0.05]41/12/3 sgn(@) +q, —e, - —-;f’—

Virtual control in the first loop is designed

2/3

q. = —0.0Sla\ sgn(a)—1.5 .ﬂoq lm sgn(oy)dt . (5.9)

The second dynamic sliding surface with appropriate time scale is selected as
1/2
o, + 3.ﬂo*2]”2 sgn(op)dt = e, +0.5 ﬂeql sgn(e, )dt . (5.10)

Then, o, -dynamics are identified, introducing e, =u,. —u,,

. 1/2 1/2 .
o, = —3|0'2| sgn(o, )+ O.5le4| sgn(e,) + g +0.1(ug —€,)=0.1p7,.

Virtual control in the second loop is designed
. 1/2 1/3
Uge —_-10-(— q, —O.S’eql sgn(eq)—10ﬂ0'2| sgn(dz)dt). (5.11)

Tracking error dynamics in the third loop are identified
é, =ty +20u, —20u .
Actual discontinuous control is designed
u =20sgn(e,) . (5.12)
Finite time convergent multiple sliding surfaces dynamics are obtained

n

&1 +0.50 ] sgn(oy) + 1.5 [l | sgn(oy)dt = e, -5
Gy + 3[0'2|1/2 sgn(o, ) + 10‘ﬂ0'2|l/3 sgn(o,)dt =-e, — 0.1y, (5.13)

é, =gy +20u, —400sgn(e, ).

Analyzing (5.13), one can conclude that e, reaches zero in a finite time robustly to bounded

behavior of 1., u,. When e, =0, o, approaches in a finite time a small domain around zero

attenuating the disturbance y,. When o, =0, e, goes to zero in a finite time according to

q
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6. Scientific Merit and Impact of the Research

The new smooth sliding mode controllers hat employ first order and second order
sliding modes and sliding mode observers are proposed to stabilize multiple sliding
surfaces in the sliding mode controlled plant.

The proposed smooth sliding mode controllers can be used is control systems where
control actions must be smooth, in particular, in multiple loop control systems.

Under the assumption that the observer captures the uncertainty and cancels its effect
on the closed-loop dynamics, the system motion in the vicinity of the sliding surface
is governed by a second-order finite time convergent dynamics that establishes a
second-order sliding on the sliding surface. Thus, both parts of the control law
(feedback PI-type control and disturbance observer) are the second order SMC’s.

Under the discrete-time control with a zero-order hold, the accuracy of holding the

trajectories on the sliding surface is of the second-order real sliding, O(T 2 )

29




References

[1} P. Zarchan, “Tactical and Strategic Missile Guidance”, vol.124, Progress in Astronautics and
Aeronautics, ATIAA, 1990.

[2] J. H. Blakelock, Automatic Control of Aircraft and Missiles, 2" Ed., Wiley, N.Y. 1991.
[3] Guidance and Control of Aerospace Vehicles, C.T. Leondes Ed., McGraw-Hill, N.Y., 1963.

[4] D. B. Ridgely and M. B. McFarland, “Tailoring Theory to Practice in Tactical Missile
Control,” IEEE Control Systems Magazine, Vol.19, No.6, 1999, pp.49-56.

[5] Wise, K. A., and D. J. Broy, “Agile Missile Dynamics and Control”, 4144 Journal of
Guidance, Control and Dynamics, Vol. 21, No. 3, 1998, pp.441-449.

[6] P. L. Vergez, “Tactical Missile Guidance with Passive Seekers Under High Off-Boresight
Launch Conditions,” Jowrnal of Guidance, Control and Dynamics, Vol.21, No.3, 1998, pp.465-470.

[7] L.-C. Fu, C.-W. Tsai, and F.-K. Yeh, “A Nonlinear Missile Guidance Controller with Pulse
Type Input Devices,” Proceedings of American Control Conference, San Diego, CA, June 2-4,
1999, pp. 3753-3758.

[8] V. L. Utkin, "Sliding Modes in Control Optimization", Springer, Berlin, 1992.

[9] R. DeCarlo, S. H. Zak, and G. P. Mathews, "Variable structure control of nonlinear
multivariable systems: a tutorial", JEEE Proc., 76, 1988, pp. 212-232.

[10] J. Y. Hung, W.B. Gao, and J.C. Hung, “Variable structure control: A survey,” IEEE Trans.
Ind. Electron., Vol. 40, 1993, pp. 2-22.

[11] Brierley S. D., and R. Longchamp, “Application of Sliding-Mode Control to Air-Air
Interception Problem ", IEEE Transactions on Aerospace and Electronic Systems, Vol.26, No2,
1990, pp.306-325.

[12] Y. Shtessel, M. Brown, K. Moore, R. Toomey, and K. Cook, “Sliding Mode Controller
Design for Kinetic Energy Kill Vehicles”, AIAA 09-05, 7" Annual AIAA/BMDO Technology
Readiness Conference, Ft. Carson, Colorado, August 3-6, 1998.

[13] A. Levant and L. Fridman, “High Order Sliding Modes as a Natural Phenomenon in Control
Theory,” in Robust Control via variable structure and Lyapunov techniques, F. Garofalo and L.
Glielmo eds., Lecture Notes in Control and Information Science, No.217, pp.107-133, Springer-
Verlag, London, 1996.

[14] A. Levant, “Robust exact differentiation via sliding mode technique,” Automatica, Vol.34,
No.3, 1998, pp.379-384

[15] B.R. Fernandez and J.K. Hedrick, “Control of Multivariable Non-linear Systems by the
Sliding Mode Method,” Int. J. Control, Vol.46, No.3, pp.1019-1040, 1987.

[16] Y.B. Shtessel and J. M. Buffington, “Finite-Reaching-Time Continuous Sliding Mode
Controller for MIMO Nonlinear Systems,” Proc. on the 37" Conference on Decision & Control,
Tampa, Florida, December 1998, pp.1934-1935.

[17] Y. Shtessel, J. Buffington, and S. Banda, "Multiple Time Scale Flight Control Using Re-
configurable Sliding Modes," AIAA4 Journal on Guidance, Control, and Dynamics, vol. 22, No.
6, pp. 873-883, 1999.

30



[18] Young, K. D., Utkin, V. L, and Ozgiiner, U., “A Control Engineer’s Guide to Sliding Mode
Control,” IEEE Transactions on Control Systems Technology, Vol. 7, No.3, 1999.

[19] Slotine, J.-J. E., Li, W., Applied Nonlinear Control, Englewood Cliffs: Prentice Hall, 1991.

[20] Edwards C., and Spurgeon, S. K. Sliding Mode Control: Theory and Applications. London:
Taylor and Francis, 1998.

[21] Bartolini, G., Ferrara, A., and Utkin, V. I, “Adaptive sliding mode control in discrete-time
systems,” Automatica, vol. 31, no. S, pp. 765-773, 1995.

[22] Morgan R., and Ozgiiner, U., “A decentralized variable structure control algorithm for
robotic manipulators,” IEEE Transactions on Automatic Control, vol. RA-1, pp. 57-65, 1985.

[23] Tesfaye, A., and Tomizuka, M., “Robust control of discretized continuous systems using the
theory of sliding modes,” International Journal of Control, vol. 62, no. 1, pp. 209-226, 1995.

[24] Su, W.-C., Drakunov, S. V., Ozgiiner, U., “An O(T?) boundary layer in sliding mode for
sampled-data systems,” IEEE Transactions on Automatic Control, vol. 45, no. 3, pp. 482-485,
2000.

[25] Kachroo, P., “Existence of solutions to a class of nonlinear convergent chattering-free sliding
mode control systems,” IEEE Transactions on Automatic Control, vol. 44, no. 8, pp. 1620-1624,
1999.

[26] Francis, B. A., and Wonhan, W. M., “The internal model principle of control theory,”
Automatica, Vol. 12, pp. 457-465, 1976.

[27] Bartolini, G., Ferrara, A., and Usai, E., “Chattering Avoidance by Second-Order Sliding
Mode Control,” IEEE Transactions on Automatic Control, vol. 43, no. 2, pp. 241-246, 1998.

[28] Brown, M. D., Shtessel, Y. B., and Buffington, J. M., "Finite Reaching Time Continuous
Sliding Mode Control With Enhanced Robustness,” Proceedings of AIAA Guidance, Navigation
and Control Conference, Denver, CO, August 14-18, 2000, AIAA paper 2000-3964.

[29] Bhat, S. P., Bernstein, D. S., “Liapunov Analysis of Finite Time Convergence Differential
Equations”, Proceedings of the American Control Conference, Seattle, WA, June 1995, pp.
1831-1832.

[30] D. Swaroop, J. K Hedrick, P. P Yip, and J. C. Gerdes, “Dynamic surface control for a class
of nonlinear systems,” IEEE Transactions on Automatic Control, v. 45, no. 10, pp. 1893-1899,
2000.

31




